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The onset of thermosolutal convection and finite-amplitude flows, due to vertical
gradients of heat and solute, in a horizontal rectangular enclosure are investigated
analytically and numerically. Dirichlet or Neumann boundary conditions for tem-
perature and solute concentration are applied to the two horizontal walls of the
enclosure, while the two vertical ones are assumed impermeable and insulated. The
cases of stress-free and non-slip horizontal boundaries are considered. The governing
equations are solved numerically using a finite element method. To study the linear
stability of the quiescent state and of the fully developed flows, a reliable numerical
technique is implemented on the basis of Galerkin and finite element methods. The
thresholds for finite-amplitude, oscillatory and monotonic convection instabilities are
determined explicitly in terms of the governing parameters. In the diffusive mode
(solute is stabilizing) it is demonstrated that overstability and subcritical convection
may set in at a Rayleigh number well below the threshold of monotonic instability,
when the thermal to solutal diffusivity ratio is greater than unity. In an infinite layer
with rigid boundaries, the wavelength at the onset of overstability was found to be a
function of the governing parameters. Analytical solutions, for finite-amplitude con-
vection, are derived on the basis of a weak nonlinear perturbation theory for general
cases and on the basis of the parallel flow approximation for a shallow enclosure
subject to Neumann boundary conditions. The stability of the parallel flow solution
is studied and the threshold for Hopf bifurcation is determined. For a relatively large
aspect ratio enclosure, the numerical solution indicates horizontally travelling waves
developing near the threshold of the oscillatory convection. Multiple confined steady
and unsteady states are found to coexist. Finally, note that all the numerical solutions
presented in this paper were found to be stable.

1. Introduction
Thermosolutal convection has received considerable attention recently, owing to its

relevance in many natural and engineering applications such as crystal growth, liquid
gas storage, solar ponds and metal solidification processes (see for instance Huppert
& Turner 1981 and Turner 1985). Earlier studies on double-diffusion were performed
in order to explain certain geophysical phenomena. As a result, emphasis was placed
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on the onset of motion in an infinite layer stratified vertically by temperature and
solute concentration. A literature review demonstrates that most studies concerning
thermosolutal convection are devoted to the case of an infinite horizontal layer with
stress-free horizontal top and bottom boundaries. The case with rigid boundaries has
received less attention since analytical solutions for this situation are considerably
more difficult to obtain. However, the study of models including this last type of
boundary conditions is important since they are more appropriate to many practical
situations. The lack of analytical and numerical results on the stability analysis of
double-diffusive convection, in confined containers with rigid boundaries, has moti-
vated the present work. Reliable analytical and numerical techniques are introduced
and some new results are presented to illustrate the effects of the non-slip boundaries
and the different governing parameters on the flow behaviour.

The following literature review is focused on double-diffusive convection in hori-
zontal fluid layers subject to vertical temperature and concentration gradients. In the
early work of Stern (1960), monotonic instability for thermohaline convection in a hor-
izontal fluid layer with stress-free boundary conditions was discussed. The possibility
of oscillatory convection was reported by Lieber & Rintel (1963). Studying finite-
amplitude convection, Veronis (1965) has demonstrated that subcritical instabilities
may set in at a Rayleigh number smaller than that given by monotonic instability the-
ory. Using linear stability analysis, Nield (1967) determined the thresholds for mono-
tonic and oscillatory convection in terms of the governing parameters and for various
boundary conditions. Later, Veronis (1968) and Baines & Gill (1969) used linear sta-
bility theory to investigate the case of shear-free and perfectly conducting boundaries
in an infinite horizontal fluid layer. Two distinct double-diffusive convective modes
were identified by these authors. The threshold for finite-amplitude convection was
obtained by Veronis (1968) using a truncated representation of Fourier series.

Huppert & Moore (1976) studied the transition from oscillatory convection to finite-
amplitude steady flows. For a given solutal Rayleigh number, symmetrical oscillations
are observed below the threshold for monotonic instability. As the thermal Rayleigh
number is increased the oscillations amplitude grows and then the flow bifurcates
toward a steady convective state. Before reaching the steady state, asymmetric and
aperiodic oscillations were observed. Oscillatory flows in double-diffusive convection
have been considered by Da Costa, Knobloch & Weiss (1981). The threshold for finite-
amplitude convection was determined and the transition between the oscillatory and
steady convective modes was studied. Knobloch & Proctor (1981) investigated nonlin-
ear convection and an analytical solution was derived in the limit where the onset of
marginal overstabilities just precedes the exchange of stabilities. It was demonstrated
that a subcritical steady solution branch occurs when the period of oscillations be-
comes infinite. Also, steady convective motion in a fluid layer with an unstable thermal
and stable salinity stratification has been studied by Proctor (1981) using a perturba-
tion analysis valid for large Lewis number. It was reported that, for any value of the so-
lutal Rayleigh number, finite-amplitude convection can occur at values of the thermal
Rayleigh number much less than that necessary for infinitesimal oscillations. An exten-
sive review of the literature on double-diffusive convection was conducted by Huppert
& Turner (1981). Travelling, standing, modulated and chaotic waves in thermosolu-
tal convection have been demonstrated numerically by Deane, Knobloch & Toomre
(1987). Transition between the oscillatory and steady convection was investigated.

Asymmetric oscillations in thermosolutal convection were observed by Moore,
Weiss & Wilkins (1991) in a horizontal layer with ideal boundary conditions. For
large Lewis numbers, the stability of salt fingers generated when warm salty water
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lies above cool fresh water was considered by Howard & Veronis (1992). It was
demonstrated that if long fingers exist, the direct instabilities are pertinent. On the
other hand, if the fingers are short, the fluid traverses the finger zone before an
instability could manifest itself. Experimental and numerical studies on binary fluid
convection have been conducted in a thin (Hele-Shaw) isothermal rectangular cell
by Predtechensky et al. (1994). Gel-filled membranes were used to maintain constant
concentrations at the boundaries. When the lower diffusing component is stabilizing,
travelling waves with high reflection coefficient at the ends of the cell appear in the
system. Recently, Spina, Toomre & Knobloch (1998) obtained multiple confined states
in large-aspect-ratio thermosolutal convection. Near the threshold of overstabilities,
nonlinear travelling waves in the horizontal direction were observed. The travelling
waves are described by a series of confined states characterized by locally enhanced
heat and mass transfer.

The present paper describes a numerical and analytical investigation on the stability
of double-diffusive convection in a rectangular enclosure subject to vertical gradients
of heat and solute. The effects of the governing parameters and the ideal and
experimental boundary conditions on the threshold of oscillatory flows and finite-
amplitude convection are studied. In particular, the effects of lateral boundaries
on the double-diffusive stability characteristics and finite-amplitude flow field, are
investigated.

The layout of the paper is as follows. In the next section, § 2, we define the physical
system and introduce the mathematical model. The numerical procedure used to
solve the full governing equations is discussed in § 3. Linear and nonlinear stability
analyses are carried out in § 4 to predict the critical Rayleigh numbers for the onset
of subcritical, oscillatory and monotonic convection. Some results and discussion are
presented in § 5. Finally, some conclusions from the present investigation are reported
in § 6.

2. Mathematical model
The flow configuration under study is a two-dimensional horizontal enclosure of

height H ′ and width W ′ filled with a binary fluid. The origin of the coordinate
system is located at the centre of the enclosure with x′ and z′ being the horizontal
and vertical coordinates, respectively. The two vertical boundaries of the cell are
assumed rigid, impermeable and adiabatic while Dirichlet or Neumann boundary
conditions are applied, for both temperature and concentration, to the horizontal
walls. The binary fluid is modelled as a Newtonian Boussinesq incompressible fluid
whose density, ρ, varies linearly with temperature, T ′, and solute concentration, S ′, as
ρ = ρ0[1− βT (T ′ − T ′0)− βS (S ′ − S ′0)], where ρ0 is the density at reference temperature
T ′ = T ′0 and solute concentration S ′ = S ′0, βT and βS being the thermal and solutal
expansion coefficients, respectively, and subscript 0 denotes a reference state.

The dimensionless equations describing conservation of momentum, energy and
solute are written, using the stream function formulation, as

∂∇2ψ

∂t
− J(ψ,∇2ψ) = Pr∇4ψ − Pr

(
RaT

∂θ

∂x
+
RaS

Le

∂φ

∂x

)
,

∂θ

∂t
+
∂ψ

∂x
− J(ψ, θ) = ∇2θ,

∂φ

∂t
+
∂ψ

∂x
− J(ψ, φ) =

1

Le
∇2φ,


(2.1)
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where t is the dimensionless time, ψ dimensionless stream function and θ and φ are
respectively the temperature and concentration deviations from the rest state solution
such that

T (t, x, z) = −z + θ(t, x, z), S(t, x, z) = −z + φ(t, x, z); (2.2)

here T and S are the dimensionless temperature and concentration variables. The
operator J is the Jacobian defined as J(f, g) = fxgz − fzgx.

The dimensionless variables are obtained from (x′, z′) = H ′(x, z), t′ = tH ′2/α,
ψ′ = αψ, S ′ = ∆S∗S + S ′0 and T ′ = ∆T ∗T + T ′0, where α is the thermal diffusiv-
ity of the binary fluid and ∆T ∗ and ∆S∗ are the characteristic scales of temperature
and concentration, respectively. The values of T ′0, S ′0, ∆T ∗ and ∆S∗ are defined
respectively by

T ′0 = aT ′(0,0) + (1− a)T
′
L + T ′U

2
, S ′0 = aS ′(0,0) + (1− a)S

′
L + S ′U

2
,

∆T ∗ = a
q′H ′

k
+ (1− a)(T ′L − T ′U), ∆S∗ = a

j ′H ′

D
+ (1− a)(S ′L − S ′U),

 (2.3)

where the subscript (0, 0) denotes the origin of the coordinate system, the subscripts
L and U refer to the lower and the upper horizontal boundaries respectively, D is
the mass diffusivity and k is the thermal conductivity of the fluid. The quantities q′
and j ′ are the constant fluxes of heat and mass applied on the horizontal walls and
the parameter a is set equal to zero for Dirichlet boundary conditions and to 1 for
Neumann ones.

The boundary conditions on the walls are

ψ =
∂ψ

∂n
= 0 on rigid boundaries,

ψ =
∂2ψ

∂n2
= 0 on stress-free boundaries,

x = ± 1
2
A,

∂ϕ

∂x
= 0,

z = ± 1
2
, a

∂ϕ

∂z
+ (1− a)ϕ = 0,


(2.4)

where ϕ stands for θ and φ and n refers to the outward boundary normal vector.

The present problem is governed by six dimensionless parameters, namely the
thermal Rayleigh number, RaT , the solutal Rayleigh number, RaS , the Lewis number,
Le, the aspect ratio of the enclosure, A, the Prandtl number, Pr, and the thermal
and solutal boundary conditions type, a. The parameters RaT , RaS , Pr, Le and A are
defined respectively as

RaT =
gβT∆T ∗H ′3

αν
, RaS =

gβS∆S∗H ′3

Dν
, P r =

ν

α
, Le =

α

D
, A =

W ′

H ′
. (2.5)

The present study will focus mainly on the case of opposing flows for which the
stabilizing agent is solute (RaS < 0) and the destabilizing one is heat (RaT > 0).

The local heat and mass transfer rates expressed in terms of the Nusselt and
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Sherwood numbers are given by

Nu =
a

T(x,−1/2) − T(x,1/2)

− (1− a)∂T
∂z

∣∣∣∣
z=±1/2

,

Sh =
a

S(x,−1/2) − S(x,1/2)

− (1− a)∂S
∂z

∣∣∣∣
z=±1/2

,

 (2.6)

respectively.
The corresponding average values along the horizontal walls can be computed

from the following integrals:

Num =
1

A

∫ A/2

−A/2
Nu dx, Shm =

1

A

∫ A/2

−A/2
Sh dx. (2.7)

3. Numerical solution
In this section, the solution of the problem is obtained numerically. A finite

element integration of the governing equations is considered. First a Galerkin weak
formulation of the governing equations (2.1) is obtained (see Appendix A, (A 1)–(A 3)),
then the calculation domain is divided into four noded rectangular elements known
as the Hermite cubic elements (Reddy 1993). At each node the unknown variable (f)
has four degrees of freedom: the variable itself (f), its two first derivatives (fx and
fz) and its second cross-derivative (fxz). Now using the Bubnov–Galerkin technique,
the discretized governing equations are[

1

∆t0
[Mψ] + [Cψ] + Pr[Kψ]

]
ψnk = Pr[B]

(
RaTθ

n
k−1 +

RaS

Le
φnk−1

)
+

1

∆t0
[Mψ]ψ0, (3.1)

[
1

∆t0
[Mθ]− [Cθ] + [Kθ]

]
θnk =

1

∆t0
[Mθ]θ

0 + [Lθ]ψ
n
k−1, (3.2)[

1

∆t0
[Mφ]− [Cφ] +

1

Le
[Kφ]

]
φnk =

1

∆t0
[Mφ]φ0 + [Lφ]ψnk−1, (3.3)

where [B], [Cψ], [Cθ], [Cφ], [Kψ], [Kθ], [Kφ], [Lθ], [Lφ], [Mψ], [Mθ] and [Mφ] are square
matrices of dimension m × m (m = 4(Nex + 1)(Nez + 1) is the total number of the
unknown node values and Nex and Nez are the number of elements used in the x-
and z-directions respectively). The corresponding elementary matrices are defined by
(A 4). The vectors ψ, θ and φ are unknown and are of dimension m. The parameter
k refers to iteration number within each time step.

The temporal derivatives are discretized with a second backward finite difference
scheme such that

ϕ0 = 4
3
ϕn−1 − 1

3
ϕn−2 and ∆t0 = 2

3
∆t, (3.4)

where n, n − 1 and n − 2 correspond to times t, t − ∆t and t − 2∆t respectively, and
∆t is the time step.

It is noted that, since the boundary conditions for the perturbations are homoge-
neous, the boundary integrals in (A 1)–(A 3), known as natural boundary conditions,
vanish. In the discretized equations (3.1)–(3.3), the boundary conditions are introduced
without altering the size of the matrices.

Each system of the linear equations (3.1)–(3.3) can be reduced to [E]X = Y and
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RaT Pr ψ0 Num Shm

2000 1 ± 4.077 1.792, 1.787V 3.318, 3.307V

5000 10 ± 13.548 3.683, 3.681V 6.493, 6.436V

Table 1. Computed values of ψ0, Num and Shm for the case of an infinite horizontal layer

with stress-free boundary conditions: A =
√

2, RaS = −107/2, Le = 101/2 with a grid size of
Nex ×Nez = 20× 20. The parameter ψ0 is the stream function value at the centre of the cell.

solved by the LU decomposition technique. To save CPU time, the Picard iterative
procedure is considered. The nonlinear advective terms are treated explicitly and are
included in Y . At each time step, the advective terms given by the matrices [Cψ], [Cθ]
and [Cφ] at iteration k are evaluated using the previous results (at iteration k − 1);
likewise for the buoyancy term in (3.1) and for the linear terms associated with the
matrices [Lθ] and [Lφ]. The convergence criterion within each time step is given by

m∑
i=1

(ϕki − ϕk−1
i )

m∑
i=1

ϕki

6 10−8, (3.5)

where ϕ stands for ψ, θ and φ.
In general, depending on the governing parameter values, it was found that two to

four iterations are required to satisfy the convergence criterion. A similar convergence
criterion is used to obtain the steady state solution.

The grid size used in the present work was varied from 20× 20 to 30× 30 and the
time step, ∆t, from 10−5 to 10−3 depending on the values of the governing parameters.
To validate our numerical code, the case of a rectangular enclosure with stress-free
boundaries and Dirichlet boundary conditions for temperature and concentration
(a = 0) is considered. An aspect ratio of A =

√
2 is chosen to simulate the infinite

horizontal layer (see Veronis 1968). Using a grid size of 20 × 20 the values of the
average Nusselt and Sherwood numbers are observed to agree well with the results
of Veronis (1968), denoted by the superscript V in table 1, with a maximum deviation
of less than 1%. These results were also reproduced by using periodic boundary
conditions in the horizontal direction using an aspect ratio of A = 23/2.

In the present paper, all the fully developed numerical solutions (steady and os-
cillatory states) obtained from the full transient governing equations are found to be
stable and sustainable. The stability of these solutions was demonstrated by adding
infinitesimal perturbations to the converged solutions and observing how these per-
turbations evolve in time. For-steady state convection, it was found that, after a while,
the convective flow returns to its initial converged state (the results are not presented
here). Also, using a standard linear stability analysis of the steady-state solutions, it
was found that the real part of the growth rate parameter is negative and the imagin-
ary part is positive which indicates a decaying oscillatory perturbation. The stability
of the oscillatory flows was also demonstrated by imposing small perturbations on
the fully developed periodic solutions. In all cases, the perturbations were found to
decay and the initial oscillatory periodic flow was recovered. Obviously, in regions
where multiple solutions coexist, a strong perturbation (with finite-amplitude) could
cause one solution to bifurcate towards the other.
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4. Stability analysis
In this section, the stability analysis of three different situations is considered. The

first and the second ones concern the linear stability analysis of the basic rest state
solution and of the fully developed flows. The thresholds for stationary convection
and oscillatory flows are determined as functions of the governing parameters. In the
third situation, a weak nonlinear stability analysis is considered and the threshold for
subcritical convection is obtained. The linear stability analysis of the pure diffusive
state will be considered first.

4.1. Onset of convection: linear theory

In this section, the physical situation described by (2.1) and (2.4) is examined, now
from the standpoint of stability to small perturbations from the quiescent state.
At the very beginning of convection the stream function, ψ, temperature, θ, and
concentration, φ, fields can be expressed in the usual manner as

ψ(t, x, z) = ψ0 eptF(x, z), θ(t, x, z) = θ0 eptG(x, z), φ(t, x, z) = φ0 eptH(x, z), (4.1)

where F(x, z), G(x, z) and H(x, z) are unknown space functions describing the fields
of ψ, θ and φ at the onset of convection, ψ0, θ0 and φ0 are small unknown amplitudes
and p is a complex number expressing the growth rate of the perturbation.

Substituting (4.1) into (2.1) and after neglecting the second-order terms (the ampli-
tudes ψ0, θ0 and φ0 being close to zero) it is found that

pψ0∇2F = ψ0Pr∇4F − Pr
(
RaTθ0

∂G

∂x
+
RaS

Le
φ0

∂H

∂x

)
,

p θ0G+ ψ0

∂F

∂x
= θ0∇2G,

pφ0H + ψ0

∂F

∂x
=
φ0

Le
∇2H.


(4.2)

The above linear perturbation equations are solved numerically using the finite
element method described in the previous section. The neutral stability analysis will
be considered first.

4.1.1. Threshold of stationary convection (p = 0): accurate approach

In this part, a finite element technique is used to solve the linear equations, for the
case of marginal stability, to determine the perturbation profiles F(x, z), G(x, z) and
H(x, z) and the threshold for the onset of monotonic convection (p = 0).

Following the Bubnov-Galerkin procedure, the finite element discretization of the
linear equations (4.2) yields

ψ0[Kψ]F = [B]

(
RaTθ0G +

RaS

Le
φ0H

)
, (4.3)

ψ0[Lθ]F = θ0[Kθ]G, (4.4)

ψ0[Lφ]F =
φ0

Le
[Kφ]H , (4.5)

where [B], [Kψ], [Kθ], [Kφ], [Lθ] and [Lφ] are square matrices defined in (A 4) and F ,
G and H are unknown vectors of dimension m.

Since the thermal and solutal boundary conditions are of the same type, it follows
that [Kθ] = [Kφ] = [K] and [Lθ] = [Lφ] = [L]. Thus, it can be observed from (4.4)
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i a = 0 a = 1

1 2585.0439 1684.4900
2 6742.5467 6217.4937
3 19 636.3992 16 030.9104
4 23 321.3792 18 911.2115
5 25 704.3757 19 399.4296

Table 2. Computed critical parameter Rasupi = 1/λi for a = 0 and 1 obtained for a square enclo-
sure with rigid boundaries and Nex ×Nez = 20× 20. The imaginary parts of λi are null and the
corresponding eigenfunctions are real.

and (4.5) that H = G and φ0 = Le θ0. Upon using these relations, (4.3)–(4.5) can be
combined to yield

ψ0[E − λI ]F = 0, (4.6)

where [I ] is the identity matrix, [E ] is a matrix defined as [E ] = [Kψ]−1[B][K]−1[L]
and the parameter λ = 1/(RaT + RaS ). The superscript −1 denotes the inverse of a
matrix.

From a mathematical point of view, (4.6) represents an eigenvalue problem for
which a non-trivial solution exists if and only if the determinant of [E − λI ] is
equal to zero. This leads to the computation of all the eigenvalues λi and the
corresponding eigenvectors Fi satisfying (4.6). The computations are performed by
using the subroutine DE2CRG of the IMSL library.

The eigenfunction G(x, z) can be then deduced from

Gi = [K]−1[L]Fi. (4.7)

If the eigenvalues λi can be rearranged in the following manner λ1 > λ2 >
. . . > λm−1 > λm, the supercritical thermal Rayleigh number, RasupTC , for the onset
of supercritical convection is then given by

Ra
sup
TC = −RaS + Rasup, (4.8)

where the critical parameter Rasup is defined as

Rasup =
1

λ1

. (4.9)

Note that the other critical values, Rasupi = 1/λi with i = 2, . . . , m, correspond to the
onset of the higher supercritical modes. In table 2, the first five eigenvalues are given
for the case of a rigid square enclosure with either Dirichlet (a = 0) or Neumann
(a = 1) boundary conditions. The corresponding eigenfunctions are plotted in figure
1. It is observed that the first mode consists of one single cell. For the other modes,
the incipient flows structures exhibit multicellular configurations.

The effect of the grid size on the computed value Rasup is depicted in table 3
for the case of a square enclosure with rigid boundaries and Dirichlet boundary
conditions. As the grid size is reduced, the critical parameter value is seen to converge
towards the one already predicted by Platten & Legros (1984). Also it is noted that
the convergence rate was found to be O(d4), where d is the mesh size based on
the diagonal length of an element, i.e. d = (∆x2

e + ∆z2
e )

1/2 and ∆xe and ∆ze are the
horizontal and vertical dimensions of an element.

The case of an infinite horizontal layer will be now discussed. For this situation,
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(a)

(b)

λ1 λ2 λ3 λ4 λ5

F

G

λ1 λ2 λ3 λ4 λ5

F

G

Figure 1. Incipient flows structures, F , temperature and concentration perturbation profiles, G,
for the first five eigenvalues λi, obtained for a square enclosure having rigid boundaries with: (a)
Dirichlet boundary conditions (a = 0), and (b) Neumann boundary conditions (a = 1).

Nex ×Ney 4× 4 8× 8 16× 16 20× 20 Platten & Legros (1984)

Rasup 2596.6699 2585.8739 2585.0790 2585.0439 2585.03

Table 3. Effect of the grid size on the computed value of Rasup = 1/λ1 for A = 1 and a = 0.

periodic boundary conditions in the horizontal direction have to be considered. The
perturbation solution can then be developed as

ψ(t, x, z) = ψ0 ept+iωxF(z), θ(t, x, z) = θ0 ept+iωxG(z), φ(t, x, z) = φ0 ept+iωxH(z),

(4.10)

where ω is an unknown wavenumber defined as ω = 2π/AC and AC is the critical
wavelength. Now F , G and H are functions of z only.

Upon substituting the perturbation, (4.10), into the governing equations and fol-
lowing the numerical technique described in § 4.1.1, one obtains linear matrix systems
similar to those depicted in (4.3)–(4.5) in which the elementary matrices are given in
Appendix B.

For the present situation, the critical Rayleigh number and the eigenfunctions are
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computed for a given aspect ratio, A, of the enclosure as described in § 4.1.1. Varying
step by step the aspect ratio of the enclosure the corresponding critical values of
Rasup are computed. The minimum one then gives the critical value for the onset
of stationary convection and the corresponding aspect ratio, AC , then represents the
critical wavelength of the convective rolls. An efficient automatic numerical procedure
is used to search for the minimum value of Rasup. Using 40 elements in the z-direction,
the computed values of Rasup and AC for the case of a horizontal layer with rigid
boundaries and a = 0 are 1707.7625 and 2.0160 respectively, which are in good
agreement with the classical results obtained by Ried & Harris (1958).

4.1.2. Threshold of oscillatory convection (p 6= 0): approximate approach

In the above section, we have demonstrated how to obtain the critical parameters
for the onset of motion and the corresponding eigenfunctions F(x, z) and G(x, z). Since
the trial functions w(x, z) and ϑ(x, z) can be chosen arbitrarily in the weak Galerkin
formulation, (A 1)–(A 3), they can be substituted by the functions F(x, z) and G(x, z),
respectively, since they satisfy the boundary conditions of the problem. In this first
approach, real eigenfunctions are used to determine the threshold for the overstable
regime (i.e. the eigenfunctions are independent of the growth rate parameter p and
they are calculated at the onset of stationary convection). Recall that, for the case
of non-slip boundary conditions, the eigenfunction are complex (see, for instance,
Knobloch & Moore 1988).

Performing the weighted residual technique yields the following linear equations:

pMψψ0 +Kψψ0 = B
(
RaTθ0 +

RaS

Le
φ0

)
, (4.11)

pMθ0 −Lψ0 = −Kθ0, (4.12)

pMφ0 −Lψ0 = −K
Le
φ0, (4.13)

where the constants B, Kψ , K, L, Mψ and M can be computed from Appendix C.
Solving (4.12) and (4.13) for θ0 and φ0 and substituting the resulting expressions

into (4.11) yields, after some algebra, the dispersion relationship

Le

(
p

γ

)3

+ p2

(
p

γ

)2

− p1

(
p

γ

)
− σPr p0 = 0, (4.14)

where

p0 = Ra0
T + Ra0

S − 1, p1 = σPr[Le(Ra0
T − 1) + Ra0

S − 1]− 1,

p2 = Le(σPr + 1) + 1, (4.15)

and

Ra0
T =

RaT

Rasup
, Ra0

S =
RaS

Rasup
, Rasup =

KψK
BL ,

γψ =
Kψ

Mψ

, γ =
K
M , σ =

γψ

γ
.

 (4.16)

Here the parameters γ and σ are positive and functions of the aspect ratio of the
enclosure and the boundary conditions applied to the system. From a physical point
of view the parameter γ can be considered as the amplification coefficient of the
amplitude growth rate p. On the other hand, the parameter σ expresses the strength
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a γψ γ σ = γψ/γ Rasup

RR 0 53.961 20.567 2.624 2585.079
RF 0 43.889 20.614 2.129 2023.634
FF 0 38.077 20.480 1.859 1643.830
RR 1 55.149 10.759 5.126 1684.525
RF 1 44.169 10.624 4.158 1246.518
FF 1 38.353 10.439 3.674 981.853

Table 4. Computed values of γ, γψ , σ and Rasup for a square enclosure subject to different
boundary conditions with Nex ×Nez = 16× 16. For this situation, the vertical boundaries are rigid.

a AC ω = 2π/AC γψ γ σ = γψ/γ Rasup

RR 0 2.0160 3.1167 (3.12)RH 38.4022 19.6435 1.955 1707.7625 (1707.765)RH

RF 0 2.3422 2.6826 (2.68)RH 24.7451 17.1873 1.440 1100.6498 (1100.657)RH

FF 0 2.8281 2.2217 (2.22)R 14.8027 14.8027 1.000 657.5114 (657.511)R

RR 1 ∞ 0.0000 (0)SGJ 42.0000 0.0000 ∞ 720.0000 (720)SGJ

RF 1 ∞ 0.0000 (0)SGJ 21.0000 0.0000 ∞ 320.0000 (320)SGJ

FF 1 ∞ 0.0000 (0)N 9.8824 0.0000 ∞ 120.0000 (120)N

Table 5. Computed values of AC , γ, γψ , σ and Rasup for an infinite layer subject to different
boundary conditions with Nez = 40.

of the inertial force effects on the growth rate parameter. When σ is very large the
inertial effects are weak enough to be neglected.

The dispersion equation (4.14) could be solved explicitly for the growth parameter
p. Depending on the governing parameters values the zeros of (4.14) can be either
three real roots or one real root and two complex-conjugate roots.

At this point, in order to validate the present numerical procedure, it is worth
giving some typical results for various hydrodynamic, thermal and solutal boundary
conditions. The case of a square enclosure with rigid vertical boundaries and an
infinite horizontal layer is considered. The lower and the upper boundaries can be
either rigid–rigid (RR), rigid–free (RF) or free–free (FF). Dirichlet (a = 0) and
Neumann (a = 1) boundary conditions for temperature and concentration are also
considered. The values of the parameters Rasup, γ, γψ and σ are reported in tables 4
and 5 for square and infinite enclosures, respectively. The critical wavelength, AC , is
also given in table 5. Table 5 shows a good agreement between the present results and
those available in the literature (Rayleigh 1916 (R); Sparrow, Goldstein & Jonsson
1964 (SGJ); Reid & Harris 1958 (RH) and Nield 1967 (N).

To our knowledge, the parameters γ, γψ and σ are obtained for the first time if we
exclude the case of an infinite horizontal layer with stress-free and Dirichlet boundary
conditions. For this situation, we can deduce from the results of Nield (1967) that
γ = γψ = 3π2/2 and σ = 1 for A =

√
2 which agree well with the present results (see

table 5).
Figure 2 illustrates the effects of the aspect ratio, A, and the boundary conditions

on the parameters Rasup, γ and σ for the case of a confined enclosure with rigid
vertical boundaries. The results presented in figure 2 correspond only to the first
eigenvalue, λi. The case with Dirichlet boundary conditions (a = 0), is depicted in
figure 2(a–c). For a square enclosure (A = 1) with rigid boundaries (RR), figure 2(a),
the numerical results indicate that the incipient flow exhibits one convective cell and
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Figure 2. Parameters Rasup, γ and σ as functions of the aspect ratio, A, of the enclosure with rigid
(RR) and free (FF) boundaries: (a–c) a = 0; (b–f) a = 1.

Rasup = 2585.04. As the aspect ratio is increased, Rasup is seen to decrease, passing
through a minimum and then increases until A ' 1.625. As the value of A is increased
above 1.625, an abrupt decrease in Rasup is observed. This is due to the fact that the
flow structure changes to a two-cellular mode. On the other hand, the parameters γ
and σ, in figures 2(b) and 2(c), undergo a decrease and an increase, respectively, when
A rises from 1 to 1.625. At the transition point, the values of γ and σ are seen to
jump up and down, respectively, as the flow structure passes from the one- to two-cell
mode. At the peak (A ' 1.625), Rasup ' 2414 and the numerical results demonstrate
that two solutions, with a different flow structure, are possible. Since the value of
the parameter γ for the two-cell flow solution is greater than that of the one-cell
flow solution, it is clear that the growth rate of the former is greater than that of
the latter according to (4.14). In this situation, the threshold for the onset of the
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oscillatory convection for the two-cell mode could be lower than that corresponding
to the one-cell mode. As the aspect ratio is increased, the amplitudes of the peaks
(figure 2a) and the jumps (figure 2b, c) are seen to dwindle. The asymptotic trends,
observed when A is made larger, correspond to an infinite horizontal layer. For the
case with free boundaries (FF), similar results are depicted in the same graphs. For
Neumann boundary conditions (a = 1), figure 2d–f, the parameters Rasup, γ and σ are
seen to vary monotonically with the aspect ratio A, in contrast with the previous case.
This is due to the fact that, at the onset of stationary convection, the flow structure
remains unicellular for any aspect ratio, such that a zero wavenumber is obtained for
a horizontal infinite layer. As discussed later, the flow structure could be multicellular
near the threshold of overstabilities. In addition, the parameter γ in figure 2(e) is seen
to decrease towards zero as A is made very large. For this situation, the growth rate
parameter p becomes smaller and it takes a long time for a perturbation to initiate a
convective flow. On the other hand, σ is seen to increase towards infinity.

The onset of monotonic and oscillatory instabilities will be now discussed. From a
mathematical point of view, according to (4.14) and (4.15) the threshold of monotonic
instability is obtained when p = 0 (i.e. p0 = 0). Thus we have

Ra
sup
TC = (1− Ra0

S )Rasup; (4.17)

Ra
sup
TC will be referred hereafter as the supercritical Rayleigh number.
The growth rate parameter, p, is a complex number which can be decomposed

as p = pr + ipi, where pr and pi are the real and the imaginary parts, respectively.
Overstability, which arises when pr = 0 and pi 6= 0, yields

p2
i = −γ2 p1

Le
and p2

i = −γ2σPr
p0

p2

. (4.18)

From the above expression, it is clear that the conditions p0 < 0 and p1 < 0 should
be satisfied for the existence of the overstable regime.

Equating these two expressions for pi and making use of (4.15), the threshold of
oscillatory convection is obtained as

RaoverTC = min

{(
− 1 + σiP rLe

Le2(1 + σiP r)
Ra0

S +
(Le+ 1)(1 + σiP rLe)

σiP rLe
2

)
Ra

sup
i

}
. (4.19)

This expression is valid for any boundary conditions considered in the present work.
The subscript i refers to the eigenvalues λi with i = 1, . . . , m.

For an infinite layer, the threshold for oscillatory flow is given by
min{RaoverTC (σ1, Ra

sup
1 , A)}. This is obtained by varying the wavelength A until the

minimum value of RaoverTC is obtained. The corresponding aspect ratio is then the
critical wavelength.

The transition from the oscillatory to monotonically augmented convection regime
is marked by the critical Rayleigh number, RaoscTC , which can be obtained by setting
pi = 0 (i.e. p = pr > 0) in (4.14). One can obtain implicitly the value of RaoscTC from

Le

(
pr

γ

)3

+ p2

(
pr

γ

)2

− p1

(
pr

γ

)
− σPr p0 = 0,

pr =
γ

3Le

(
−p2 +

√
p2

2 + 3Le p1

)
.

 (4.20)

For given RaS , Le, Pr and A, the value of RaoscTC can be computed numerically from
(4.20) using, for example, the Newton-Raphson method.
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The three critical Rayleigh numbers given by (4.17), (4.19) and (4.20) intersect at a
point having the following coordinates:

RaT =
σPrLe+ 1

σPr(Le− 1)
Rasup, RaS = − σPr + 1

σPr(Le− 1)
Rasup. (4.21)

This intersection point gives the limit beyond which the overstable regime can exist
(RaT > RaT and RaS < RaS ). From the above results, it is clear that overstabilities
may arise only when RaS < 0 and Le > 1 or when RaT < 0 and Le < 1.

4.1.3. Limiting cases: Pr � 1 and Le� 1

For large values of Pr, the critical Rayleigh numbers, given by (4.19) and (4.20),
reduce to

RaoverTC =
Le+ 1− Ra0

S

Le
Rasup,

RaoscTC =
Le− 1− Ra0

S + 2
√

(1− Le)Ra0
S

Le
Rasup.

 (4.22)

and they become independent of Pr.
For large Lewis number (Le→∞), it can be demonstrated that the threshold for

the onset of overstability RaoverTC → Rasup as Le→∞ and the domain delineating the
overstable regime becomes narrower.

4.1.4. Threshold of oscillatory convection (pr = 0 and pi 6= 0): accurate approach

For this situation, the eigenfunctions could be complex and they are functions of
the growth rate parameter, p. The perturbation profiles remain the same as depicted
in (4.1) for confined enclosure and in (4.10) for an infinite layer.

Using the finite element method, the discretization of the linear perturbation
equations leads to the following linear system of equations: [Kψ] [Bψθ] [Bψφ]

[Bθ] [Kθ] 0

[Bφ] 0 [Kφ]


 F

G
H

 = p

 [Mψ] 0 0
0 [Mθ] 0
0 0 [Mφ]

 F
G
H

 . (4.23)

The corresponding elementary matrices are defined by [Bψθ]
e = −PrRaT [B]e,

[Bψφ]e = −(PrRaS/Le)[B]e, [Mψ]e = −[Mψ]e, [Mθ]
e = −[Mθ]

e, [Mφ]e = −[Mφ]e,
[Kφ]e = (1/Le)[K]e and [Kψ] = Pr[Kψ]e, where [B]e, [Mψ]e, [Mθ]

e, [Mφ]e, [Kψ]e, [Kθ]
e

and [Kφ]e are defined by (A 4) for confined enclosure and by (B 1) for an infinite layer.
For a given set of the governing parameters, RaS , Pr, Le, A and a, the eigenvalues,

p, and eigenfunctions F , G and H of the above system are computed using the
subroutines DGVCRG and DGVCCG of the IMSL library for general real and
complex matrices, respectively. The onset of oscillatory convection is obtained by
only one eigenvalue when its real part changes from negative to positive values. This
is obtained by varying the thermal Rayleigh number (and the wavelength for the
infinite layer). The lowest Rayleigh number for any value of the wavelength then
corresponds to the critical Rayleigh number. If the imaginary part of the eigenvalue
is different from zero the instability is then oscillatory. It is found that, at the onset of
overstability, there are two eigenvalues having zero real parts and the same imaginary
parts with negative and positive values. To validate the two present approaches, the
work of Spina et al. (1998) is considered. The values of the governing parameters are
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(a)

(b)

ψ θ φ

Figure 3. Perturbation profile at the onset of oscillatory convection in an infinite horizontal layer
with non-slip boundaries for RaS = −3× 109/2, Pr = 1, Le = 101/2 and a = 0; RaoverTC = 25251.75,
AC = 1.4369: (a) pi = 70.656 and (b) pi = −70.65.

Approximate approach Accurate approach Spina et al. (1998)

RaoverTC 24 987.05 25 251.75 25 251.76
AC 1.460 1.4369 1.4378
pi ± 69.92 ± 70.656 70.66

Table 6. Critical Rayleigh number, RaoverTC , critical wavelength, AC , and oscillation frequency, pi, at
the onset of the overstable regime for RaS = −3× 109/2, Pr = 1, Le = 101/2 and a = 0 in an infinite
horizontal layer with rigid boundaries (Ney = 20).

RaS = −3×109/2, Pr = 1, Le = 101/2 and a = 0 with rigid boundaries. For an infinite
horizontal layer, the critical Rayleigh number, RaoverTC , the critical wavelength, AC ,
and the oscillation frequency, pi, are depicted in table 6. The agreement between the
present results with those of Spina et al. (1998) is excellent. However the approximate
approach is seen to underestimate the accurate results within 1.5%. The difference
between the two present approaches is that the approximate one assumes a vertical
boundary of the cell (since the eigenfunctions are obtained at the onset of stationary
convection) and the accurate one allows the vertical boundary to be bowed to the
left or to the right in the horizontal direction. Also, it can be observed that the
temperature and concentration are out of spatial phase, as shown in figure 3, and
left (pi > 0) or right (pi < 0) travelling waves could develop near the threshold of
oscillatory convection. The computation for the first approach, however, is much
faster than the second one (i.e. the matrix dimensions of the former are 3 × 3 less
than those of the latter).

The effect of the governing parameters Pr and Le on the threshold of oscillatory
convection is examined for an infinite horizontal layer. The results are depicted in
figure 4 in terms of the critical Rayleigh number, RaoverTC , the critical wavelength, AC ,
and the oscillation frequency, pi, for RaS = −105. Recall that in an infinite horizontal
layer with stress-free boundaries, the critical wavelength (AC = 2

√
2) is independent

of the governing parameters (Veronis 1968). However, for non-slip boundaries, the
critical wavelength, as shown in figure 4, is found to be a function of the governing
parameters. The parameters RaoverTC , AC and pi are plotted, in figure 4, as functions
of Pr for different values of Le. For Dirichlet boundary condition (figure 4a) when
the Prandtl number is increased from 0.001 to 1000, RaoverTC and AC are seen to
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Figure 4. Onset of oscillatory convection: critical Rayleigh number, RaoverTC , critical wavelength, AC ,

and oscillation frequency, pi, as functions of Pr and Le for RaS = −105 in an infinite layer with
non-slip boundaries; (a) a = 0 and (b) a = 1. The approximate approach is represented by lines and
the accurate one by symbols.

decrease first, passing through a minimum, and then increase asymptotically towards
constant values. A reverse trend is observed for the oscillation frequency, pi. The
parameters RaoverTC , AC and pi are seen to be independent of Pr when it becomes very
large. Also, it is observed that the parameters RaoverTC and pi decrease with increasing
Le. The approximate approach (lines) is seen to agree well with the accurate one
(symbols). For this case, the critical wavelength is always finite (multicellular flow).
However, for Neumann boundary conditions (a = 1), the flow could be unicellular or
multicellular at the onset of overstabilities, depending on the governing parameters.
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According to the approximate approach, as shown in figure 4(b), for the value of
RaS considered here, the flow is multicellular in a narrow range of Pr. The range is
observed to decrease with increasing Le. Also, as can be seen from figure 4(b), RaoverTC

is a monotonic function of Pr; however, the critical wavelength is infinity for higher
and lower values of Pr for which the oscillatory frequency vanishes. On the other
hand, the accurate approach predicted that the flow at the onset of overstabilities is
always multicellular (finite wavelength) as shown in figure 4(b). Like the Dirichlet case,
figure 4(a), the critical parameters for the Neumann case, figure 4(b), are found to be
independent of Le when it becomes very large. For Neumann boundary conditions,
the approximate approach is not reliable.

To be more confident about the present findings, the case of an infinite layer with
RaS = −105, Pr = 10, Le = 101/2 and Neumann boundaries (a = 1) is considered.
For this situation, the linear stability analysis predicted that RaoverTC = 34 047.6, AC =
1.477 and pi = 86.77. By solving the full transient governing equations and using a
unicellular flow as initial conditions with RaT = 36 000, it was found that the flow is
oscillatory and the single-cell flow pattern is broken into at least 13 convective cells
travelling in the horizontal direction. The numerical results (not presented here) are
obtained in a finite container having an aspect ratio of A = 10 to approximate the
case of an infinite layer. It was found that the spatial period of the convective rolls is
roughly 1.33–1.53 (13 to 15 cells, the number is varying in time while the cells travel
horizontally) which compares well with the value of 1.48 at the onset of oscillatory
convection for the case of an infinite layer.

4.2. Finite-amplitude convection

4.2.1. Weak nonlinear theory

Finite-amplitude convection, near the threshold of monotonic instabilities, is now
investigated using the Galerkin method with a limited series representation. Assuming
two-dimensional flows with the hypothesis that the convective rolls are rectangular and
have their axes perpendicular to the vertical plane (x, z), analytical solutions will be
derived for the Dirichlet and Neumann boundary conditions. For ideal hydrodynamic
boundary conditions, it was demonstrated by Veronis (1968), Platten & Legros (1984)
and Ahlers & Lücke (1987) that, in the vicinity of the onset of monotonic convection,
the perturbation profiles can be developed in a limited Fourier series representation as

ψ(t, x, z) = ψ0(t)F(x, z),

θ(t, x, z) = θ0(t)G(x, z) + θ1(t) h(x, z),

φ(t, x, z) = φ0(t)G(x, z) + φ1(t) h(x, z),

 (4.24)

where the amplitudes ψ0(t), θ0(t), θ1(t), φ0(t) and φ1(t) are time functions while F(x, z),
G(x, z) and h(x, z) are space functions describing the perturbation profiles in the vicin-
ity of the onset of monotonic convection. These functions must satisfy the boundary
conditions given by (2.4). According to Veronis (1968), Platten & Lagros (1984) and
Ahlers & Lücke (1987), the functions F(x, z) and G(x, z) can be chosen to be the
temperature and concentration perturbation profiles corresponding to the incipient
flow and the function h(x, z) as

h(x, z) = sin (2πz) for a = 0,

h(x, z) = sin (πz) for a = 1.

}
(4.25)

For the present problem, a similar approach will be used to study the stability
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of the system with experimental boundary conditions. Since Fourier series are not
suitable for this situation because of the non-slip boundary conditions, the functions
F(x, z) and G(x, z) will be chosen to be those predicted numerically by the linear
stability analysis described in the previous § 4.1.

Substituting (4.24) into (2.1) and using the functions F(x, z), G(x, z) and h(x, z) as
the weighted functions, the weak Galerkin formulation leads to the following set of
ordinary differential equations:

Mψ

dψ0

dt
+Kψψ0 = B

(
RaTθ0 +

RaS

Le
φ0

)
, (4.26)

Mdθ0

dt
−Lψ0 +L1ψ0θ1 = −Kθ0,

M1

dθ1

dt
−L2ψ0θ0 = −K1θ1,

 (4.27)

Mdφ0

dt
−Lψ0 +L1ψ0φ1 = −K

Le
φ0,

M1

dφ1

dt
−L2ψ0φ0 = −K1

Le
φ1,

 (4.28)

where the B,Kψ ,K,K1,L,L1,L2,Mψ ,M andM1 are defined in (C 1). For a given
set of the governing parameters, the ordinary differential equations, (4.26)–(4.28), can
be solved numerically using, for example, the Runge–Kutta method. However, explicit
steady-state solutions, when they exist, can be derived. For this situation, the solution
in terms of ψ0 is given by the following polynomial equation:

ψ0(Le
4ψ4

0 − 2b2d1Le
2ψ2

0 − b4d2) = 0, (4.29)

where d1 and d2 are given by

d1 = Le2(Ra0
T − 1) + Ra0

S − 1, d2 = 4Le2(Ra0
T + Ra0

S − 1), (4.30)

in which Ra0
T and Ra0

S are the normalized Rayleigh numbers and

Rasup =
KψK
BL , b =

( KK1

2L1L2

)1/2

. (4.31)

In the present notation, similar equations have been derived by Da Costa et al. (1981)
for the case with stress-free and Dirichlet boundary conditions.

Within the present approach, the parameter b is a constant which depends only on
the aspect ratio of the enclosure and the boundary conditions. Some typical values of
b are given in table 7 for various boundary conditions. The results are obtained with
a grid size of 12× 12 for a square cavity and 12× 24 for an infinite horizontal layer.
When the wavenumber is zero, an aspect ratio A = 100 is considered to simulate the
infinite layer.

The only results available in the literature are those reported by Da Costa et al.
(1981) for the case of a horizontal layer with ideal boundary conditions. For this
situation, one can deduce from their analysis that b =

√
12 which agrees well with

the present result (b = 3.47, see table 7 for A = ∞, a = 0 and stress-free boundary
conditions (FF)). More results will be discussed in § 5.
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RR RR RR RR RF RF RF RF FF FF FF FF

A 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞ 1 ∞
a 0 0 1 1 0 0 1 1 0 0 1 1

b 2.99 2.72 1.63 1.61 3.10 3.10 1.56 1.53 3.13 3.47 1.48 1.41

Table 7. Computed values of b for a square enclosure and infinite horizontal layer for different
boundary conditions.

4.2.2. Asymptotic analytical solution

To support our present analysis, an accurate analytical solution will be developed
for finite-amplitude convection for the case of a shallow (A� 1) enclosure, subject
to constant fluxes of heat and solute (a = 1), using the parallel flow concept. In the
past, this concept has been used with success by many authors such as Cormack,
Leal & Imberger (1974) and Mamou, Vasseur & Bilgen (1996, 1998) to predict the
flow behaviour. For a shallow enclosure, it may be assumed that the flow in the
central part of the enclosure is parallel such that the stream function depends only
on z. Thus we can write ψ(x, z) ' ψ(z). Also, it can be easily demonstrated that the
temperature and concentration fields can be decomposed as θ(x, z) = CTx+fT (z) and
φ(x, z) = CSx+ fS (z), where CT and CS are the horizontal gradients of temperature
and concentration, respectively, and fT and fS are unknown functions. Using the
above approximations, the steady solution of the governing equations, (2.1), yields

ψ(x, z) = ψ0(16z4 − 8z2 + 1),

θ(x, z) = CTx+
CTψ0

15
(48z5 − 40z3 + 15z),

φ(x, z) = CSx+
LeCSψ0

15
(48z5 − 40z3 + 15z),

 (4.32)

where ψ0 is the stream function value at the centre of the enclosure defined as

ψ0 =
15

8

(
Ra0

TCT +
Ra0

S

Le
CS

)
, (4.33)

in which Ra0
T = RaT/Ra

sup and Ra0
S = RaS/Ra

sup with Rasup = 720.
Performing the energy and solute balances at any vertical section of the enclosure,

it is readily found that

CT =
16b2ψ0

15(2b2 + ψ2
0)

and CS =
16b2Leψ0

15(2b2 + Le2ψ2
0)
, (4.34)

where b = (315/256)1/2.
Substituting (4.34) into (4.33), yields

ψ0(Le
4ψ4

0 − 2b2d1Le
2ψ2

0 − b4d2) = 0, (4.35)

where d1 and d2 are given by (4.30). The above polynomial equation is similar to
(4.29).

The local heat and mass transfer rates are uniform and they are defined, according
to (2.6) and (2.7), by

Nu =
10

3

(
ψ2

0 + 2b2

ψ2
0 + 20b2/3

)
and Sh =

10

3

(
Le2ψ2

0 + 2b2

Le2ψ2
0 + 20b2/3

)
. (4.36)
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To validate the parallel flow concept, some numerical data, obtained by solving the
full governing equations (2.1), are compared to the analytical solution. The results are
illustrated in figure 5 for Ra0

T = 3, Ra0
S = −2, Le = 10, Pr = 7, A = 10, a = 1 and

rigid boundaries. Figure 5(a) demonstrates clearly the parallel flow characteristics such
as the parallelism of the streamlines with respect to the horizontal walls (except at the
end regions) and the horizontal linear variations of temperature and concentration.
Figures 5(b) and 5(c) illustrate a comparison between the numerical (symbols) and
analytical (solid lines) solutions in terms of mid-height horizontal profiles of ψ, T
and S . In figures 5(d) and 5(e) mid-width vertical profiles are also shown. As can
be observed, good agreement is obtained between the two types of solutions in the
central part of the enclosure (−4 6 x 6 4). It is noted that the present results are
obtained exactly at the threshold of monotonic instability, (RasupTC = 3 × Rasup). This
convective flow is due to the fact that the stabilizing agent (solute) is the slower
diffusing component (Le = 10). For this situation, the nonlinear advective terms in
the solute conservation equation distort considerably the linear concentration field
and the solute gradient in the bulk of the layer is reduced, as shown in figures 5(a)
and 5(c). Therefore, the thermal gradient in that region becomes dominant and gives
rise to the convective flow. The imposition of a constant heat flux, without altering
the imposed mass flux, increases the fluid amplitude velocity and the solute transfer is
thus enhanced. As a result, a large amount of solute is removed from the hot wall and
transported by convection to the cold wall. This mechanism leads to a solute deficit
near the lower boundary and a surplus near the upper one. To compensate for the
solute deficit and adjust the surplus, a downward solute transfer appears in the bulk of
the enclosure and gives rise to an adverse solute gradient (see the vertical concentration
profiles in figure 5e) that contributes to the destabilization of the system. As a result,
convective flows are made possible beneath the threshold of monotonic instabilities.

4.2.3. Stability analysis of the asymptotic solution: accurate approach

In this section, the stability of the parallel flow solution is studied and the critical
Rayleigh number for Hopf bifurcation is determined. The total solution including the
perturbations can be written as follows:

ψ(x, z, t) = ψb(x, z) + ψp(x, z, t),

θ(x, z, t) = θb(x, z) + θp(x, z, t),

φ(x, z, t) = φb(x, z) + φp(x, z, t),

 (4.37)

where ψb, θb and φb represent the basic fully developed solution (4.32) and ψp, θp
and φp are the perturbation profiles which can be represented by (4.10). The linear
problem, after neglecting the small quantities, is obtained as follows:
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
(4.38)

The finite element method is used to solve the above linear eigenvalue problem. The
resulting system of linear equations is similar to that given in (4.23). The elementary
matrices are given in Appendix D.
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Figure 5. Comparison between the numerical results and the analytical parallel flow solution
for Ra0

T = 3, Ra0
S = −2, Pr = 7, Le = 10, A = 10, a = 1 and rigid boundaries (Rasup = 722.57):

(a) streamlines, isotherms and isoconcentrations, (b) horizontal stream function profile at the
mid-height of the enclosure, (c) horizontal temperature and concentration profiles at the mid-height
of the enclosure, (d) vertical stream function profile at the mid-width of the enclosure, (e) vertical
temperature and concentration profiles at the mid-width of the enclosure. Numerical solution:
ψ0 = 2.2084, ψmax = 2.3199, Nux=0 = 1.8697, Num = 1.8051, Shx=0 = 3.3188 and Shm = 3.3633.
Analytical solution: ψ0 = 2.2086, Nux=0 = Num = 1.8701 and Shx=0 = Shm = 3.2947.
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The present numerical procedure is validated with the results of Kimura, Vynnycky
& Alavyoon (1995) obtained for a Darcy porous medium in thermal convection. To
simulate their case with the present governing equations, (2.1), the Prandtl number is
made very large (Pr ∼ 106) in order to neglect the inertial term, which is the case in
a porous medium. The viscous term in the governing equations, ∇4ψ, is replaced by
−∇2ψ and the solutal buoyancy force is cancelled (RaS = 0). To obtain the threshold
for Hopf bifurcation (transition from steady to oscillatory convection) the critical
Rayleigh number and wavelength are obtained in the same manner as described in
§ 4.1.4. Using 30 finite elements in the vertical direction, the critical Darcy Rayleigh
number for Hopf bifurcation is obtained as RhopfTC = 506.069, the corresponding critical
wavelength is AC = 1.3023 and the oscillation frequency is obtained as pi = 138.906.
These results are seen to agree well with those obtained by Kimura et al. (1995).

For double-diffusive convection, the basic solution is obtained as a function of
the governing parameters, namely RaT , RaS and Le. For RaS = −2× Rasup, Pr = 7,
Le = 10 and a = 1, the critical Rayleigh number which characterizes the transition
from steady to oscillatory flow (Hopf bifurcation) is obtained as RahopfTC = 52 028.9,
the corresponding critical wavelength is AC = 1.579 and the oscillation frequency
is pi = 135.27. For this situation, the perturbation profiles for the stream function,
temperature and solute, are illustrated in figure 6. For an enclosure having an
aspect ratio A = 10, the numerical results of the fully governing equations indicate
that the transition from steady to oscillatory convection occurs within the range
of the Rayleigh number 52 000 < RaT < 55 000, which is in agreement with the
linear stability analysis prediction. Near the threshold of oscillatory convection, the
amplitude of the oscillation is very small and changes in the flow structure are not
noticeable. To clearly illustrate the unsteadiness of the flow structure, a relatively
high Rayleigh number of RaT = 70 000 is considered. For this value, according to
the linear stability analysis, as shown in figure 7, the parallel flow solution is unstable
to perturbations of wavelength 0.92 6 A 6 2.64. The growth rate parameter p is
computed for fixed values of RaT , RaS , Le and Pr by varying the wavelength A. In
this range (0.92 6 A 6 2.64), it was found that there are at least two eigenvalues
with positive real parts. The one with a maximum value and the corresponding
oscillation frequency are illustrated in figure 7(a) as functions of the wavelength A.
The dominating perturbation is the one that has a maximum real part of the growth
rate parameter, pr . As shown in figure 7(a), the maximum value is obtained for
A = 1.32 and the corresponding oscillatory frequency is pi = 185.68. For RaT = 70 000,
the oscillatory behaviour of the nonlinear convective solution is depicted in figures
7(b) and 7(c), for an aspect ratio of A = 10, in terms of the time history of the
flow intensity, ψ0, and the flow structure time-evolution, respectively. The oscillation
period is τ = 0.0335 (pi = 2π/τ = 187.56). Since the oscillation amplitude is weak,
the linear and nonlinear predictions were found to agree well. The small discrepancy
between these two approaches is probably attributable to the fact that the numerical
results are obtained with a finite aspect ratio. From figure 7(c), it is observed that
the main flow remains unicellular but the parallel flow loses its characteristics and
the oscillatory behaviour is exemplified by the presence of a series of small secondary
vortices at the mid-height of the enclosure. These vortices are born at the centre of
the enclosure, from where, they are seen to travel to the left and to the right vertical
boundaries where they collapse.

For pure thermal convection (RaS = 0), the critical Rayleigh number, the critical
wavelength and the corresponding oscillatory frequency for Hopf bifurcation are
given respectively by RahopfTC = 51 854.4, AC = 1.579 and pi = 135.28.
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(a)

(b)

ψ θ φ

Figure 6. Perturbation profiles at the threshold for Hopf bifurcation for RaS = −2Rasup, Pr = 7,
Le = 10 and a = 1 in an infinite layer with rigid boundaries: (a) pi = 135.27 and (b) pi = −135.27.

5. Results and discussion
In this section, a comparison is made between the predictions of the linear and

nonlinear theories and the numerical solution of the full governing equations.
From the analytical nonlinear theory results, (4.29) and (4.35), it is easily found

that the solution for ψ0 is

ψ0 = 0, (5.1)

and

ψ0 = ± b

Le

(
d1 ±

√
d2

1 + d2

)1/2

. (5.2)

The above equations indicate that five different steady-state solutions are possible.
One corresponds to the purely diffusive regime (ψ0 = 0) and the four others to
convective flow regimes. The signs + and − outside the brackets refer to counter-
clockwise and clockwise circulation, respectively. Within the brackets, they refer to
convective stable and unstable solutions, respectively. The stability analysis of these
two solutions will be discussed later. Also, it is observed from (5.2) that two types
of bifurcation are possible. The first one, called hereafter supercritical bifurcation, is
characterized by the fact that the transition from the quiescent state to the convective
regime occurs through zero flow amplitude (ψ0 = 0). The threshold, expressed in
terms of the supercritical Rayleigh number RasupTC , is obtained, when the conditions
d1 < 0 and d2 = 0 are satisfied, as

Ra
sup
TC = (1− Ra0

S )Rasup, (5.3)

which is similar to the results predicted by the linear stability analysis, (4.17).
The second one, called subcritical bifurcation, is characterized by the fact that the

onset of motion occurs through finite-amplitude convection (ψ0 = ±b√d1/Le). As
discussed by Veronis (1968), subcritical convection is possible only when the two
buoyancy forces are opposing each other (RaT > 0 and RaS < 0 or vice versa) and
when the stabilizing agent is the slower diffusing component. In the present analysis,
it can be demonstrated, from the nonlinear theories, that subcritical flows occur when
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Figure 7. (a) Perturbation growth rate pr and pi as functions of the wavelength A. (b) Time
history of the flow intensity ψ0 and (c) time-evolution of the flow structure, for RaT = 70 000,
RaS = −2× Rasup, Pr = 7, Le = 10 and a = 1 with rigid boundaries.

RaS < 0 and Le > 1 and more precisely when

RaS < 0 and Le >

√
Ra0

S − 1

Ra0
S

. (5.4)
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a = 0 and 1. The results obtained with Dirichlet boundary conditions (a = 0) are shown with solid
lines and those with Neumann boundary conditions (a = 1) with dashed lines.

These flows are initiated at a threshold, corresponding to a saddle-node point, called
the subcritical Rayleigh number RasubTC , which can be obtained from the conditions
d1 > 0 and d2

1 + d2 = 0, as

RasubTC = Le−2

(√
Le2 − 1 +

√
−Ra0

S

)2

Rasup. (5.5)

A similar expression for the case of an infinite horizontal layer with ideal boundary
conditions has been derived by Veronis (1968) when considering Dirichlet boundary
conditions (a = 0) for which Rasup = 27π4/4.

The regions delineating the different regimes described in the above section will
now be discussed on the basis of the linear and nonlinear theories. Typical results,
for the case of a square enclosure, are illustrated in figure 8 for Pr = 7 and Le = 10.
The four critical Rayleigh numbers, RasubTC , RaoverTC , RaoscTC and Ra

sup
TC , are presented in

the plane Ra0
T , Ra0

S . Four distinct regions are delineated. The first one, denoted by I,
corresponds to the diffusive regime (RaT < RasubTC). Both linear and nonlinear theories
indicate that the system is stable such that any dynamic perturbation will decay to the
rest state situation. The second region, denoted by II (RasubTC < RaT < RaoverTC ), refers
to the subcritical convective regime. According to the linear theory, the rest state is
stable to an infinitesimal disturbance. However, the nonlinear one predicts that the
diffusive regime can be disturbed by a large finite-amplitude dynamic perturbation.
The third region III (RaoverTC < RaT < RaoscTC), describes the overstable regime in which
any dynamic perturbation will evolve in an oscillatory manner from the rest state.
In that region, oscillatory and steady convective modes are possible. The region IV
delineated by RaT > RaoscTC corresponds to the direct monotonic convective regime.

Bifurcation diagrams for the steady-state solution are presented in figures 9 and 10
for different values of the solutal Rayleigh and Lewis numbers. The flow amplitude,
ψ0, is normalized with respect to the constant b, (ψn = ψ0/b), and the thermal and
solutal Rayleigh numbers are normalized with respect to the critical parameter Rasup.
The resulting diagrams are thus independent of the aspect ratio of the enclosure and
the hydrodynamic, thermal and solutal boundary conditions considered in this study.

The results corresponding to the case of opposing flows, in which the solute is
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Figure 9. Bifurcation diagram for opposing steady flows when Ra0
S = −20: normalized flow

intensity, ψn = ψ0/b, versus Ra0
T for different Lewis numbers.

stabilizing (Ra0
S < 0), are depicted in figure 9 for Ra0

S = −20. For this situation,
both subcritical and oscillatory flows are possible as predicted by the present theories.
As already discussed while considering the nonlinear theory results, there exists
two types of bifurcation, one supercritical and the other one subcritical. For the
first type, convection sets in at a Rayleigh number RaT = Ra

sup
TC = 21× Rasup. For

subcritical bifurcation, convective flow sets in at a Rayleigh number RaT = RasubTC
well below the threshold of monotonic instability (RasubTC < Ra

sup
TC). The linear theory,

on the other hand, predicts that steady and oscillatory flows are possible below
the supercritical Rayleigh number, when the stabilizing agent (solute) is the slower
diffusing component (Le > 1). The threshold for such flows is characterized by the
overstable critical Rayleigh number, RaoverTC . For the value Ra0

S = −20 considered
here, the Lewis number that characterizes the transition between the supercritical and
subcritical bifurcations is Let = (21/20)1/2 ' 1.025, (5.4). Thus, as can be observed
from figure 9, the bifurcation is supercritical when Le < Let and subcritical when
Le > Let. The solutions depicted by solid lines, referred to as stable branches, are
expected to be stable. Those with dotted lines, referred to as unstable branches, are
seen to vanish above the supercritical threshold. They are believed to be unstable
since the linear theory predicts that any infinitesimal perturbation grows with time
near the threshold of supercritical convection. In the subcritical regime, the transition
from the rest state to the convective mode occurs through finite-amplitude convection.
As a result, the flow amplitude velocity is finite at the threshold from where the stable
and unstable branches bifurcate. As the Lewis number is increased, the subcritical
value of the flow amplitude (ψsub0 ; the value of ψ0 at RaT = RasubTC) is seen to increase
first and then decreases towards zero as Le→∞.

Some typical analytical and numerical results are presented in figure 10 for Ra0
S =

−2, Pr = 7, Le = 10 and a = 0 and 1, in terms of the flow amplitude ψ0 as function
of the thermal Rayleigh number, Ra0

T . Figure 10(a) corresponds to the case of a
square enclosure and figure 10(b) to an infinite horizontal layer. The numerical results
are represented by symbols. The four critical Rayleigh numbers are given in table 8.
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For a square enclosure (A = 1), the nonlinear analytical results are seen to agree
well with the numerical ones. By decreasing Ra0

T from 6 to 1 step by step, using the
previous solution as initial conditions, the steady-state solution is observed to persist
down to Ra0

T ' 1.4. Below that value, the flow was found to oscillate periodically and
to decay towards the rest state when Ra0

T is decreased below 1.29. However, using
the rest-state solution as initial conditions, convective flows were found to appear
just above the threshold of overstability, RaoverTC . In the vicinity of RaT = RaoverTC , the
numerical results lead to permanently oscillating solutions and the steady branch
cannot be reached. Increasing Ra0

T progressively, the flow amplitude increases and the
oscillation frequency is observed to decrease and vanish completely above Ra0

T ' 1.45
(for a = 0) and then the steady branch is reached. In the overstable regime, as
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A a Rasup RasubTC/Ra
sup RaoverTC /Ra

sup RaoscTC/Ra
sup Ra

sup
TC/Ra

sup

1 0 2585.04 1.2914 1.2967 1.9711 3
1 1 1684.53 1.2914 1.2982 1.9603 3
∞ 0 1707.76 1.2914 1.3008 1.9785 3
∞ 1 720.00 1.2914 1.3000 1.9485 3

Table 8. Critical Rayleigh numbers for Ra0
S = −2, Pr = 7, Le = 10, A = 1 and ∞, a = 0 and 1

and rigid boundaries.

demonstrated numerically, multiple confined states are possible. For instance, for
Ra0

T = 1.4 and a = 0, two different solutions are possible. The first one depicted in
figure 11(a) is steady and the second one in figure 11(b–d), is periodically oscillating.
The two solutions are obtained by using finite-amplitude convection and the rest-state
solution as initial conditions, respectively. Figures 11(b) and 11(c) illustrate the time
history of the flow intensity extremum, ψext, and of the Nusselt and Sherwood numbers,
Num and Shm. It can be observed from figure 11(c) that the heat and solute transfer
rates are out of phase. At t = 0, figure 11(d) shows that the flow is counterclockwise
and monocellular and the heat and solute transfer rates are almost maximum and
minimum, respectively (figure 11c), such that the flow is dominated at this time by
the thermal buoyancy force. As the time is increased, a stabilizing solute gradient is
established progressively and the flow intensity decreases accordingly towards the rest
state. As t reaches 0.2754, the flow intensity is weak and the flow patterns start to
restructure, giving rise to the appearance of two clockwise small vortices in the vicinity
of the top left and the bottom right corners of the enclosure. These two eddies grow
and progressively squeeze the main flow cell as can be observed at t = 0.3428, 0.3442
and 0.3458 in figure 11(d). At t = 0.3702, a complete reversal of the flow circulation
is obtained and then the flow intensity increases until t = 0.5618. This completes one
half-period of the flow evolution. A symmetrical evolution process is repeated for the
remaining half-period (see the flow structures in figure 11(d) for t = 0.8372 to 0.9320).

It is noted that, upon starting the numerical code with the rest-state solution as
initial conditions with a grid size of 20 × 20 and ∆t = 5 × 10−4, the flow intensity
was found to increase in an oscillatory manner. At the beginning of convection
(|ψext| � 1), the sense of the flow circulation reverses cyclically with a time period
τ = 0.791. The transition from clockwise to counterclockwise circulation (or vice
versa) occurs with the presence of multicellular flows as discussed for figure 11(d).
For this case, it was found, according to the linear stability analysis, that γ = 20.567
and σ = 2.624 and the solution to the dispersion relationship, (4.14), consists of one
real root (p = −402.34) and two complex-conjugate roots (p = 0.992± i7.909). Hence,
the time period of oscillation is τ = 2π/7.909 = 0.794 which is in good agreement with
the value τ = 0.791 predicted by the numerical code at the earlier stages of convection.
When the flow achieves the permanently oscillating state (see figure 11b–d), the time
period of the nonlinear oscillations increases to τ = 1.124 due to the nonlinear effects.

As discussed above, the oscillatory flows in a square enclosure are characterized by
a transition from a clockwise to a counterclockwise circulation and vice versa. The
reversal of flow circulation occurs with the appearance of multicellular structures. For
a shallow enclosure, the mechanism of the oscillatory flows is different. To illustrate
this point, the above problem has been reconsidered for the case of rectangular
enclosure of relatively large aspect ratio (A = 5). For this situation, according to the
linear stability analysis, Rasup = 1778.75. Typical results for the oscillatory solution
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Figure 11. Steady and oscillatory flows for Ra0
T = 1.4, Ra0

S = −2, Pr = 7, Le = 10, A = 1, a = 0
and rigid boundaries. (a) Steady flows: ψ0 = 1.970, Num = 1.253 and Shm = 3.009, oscillatory
flows. (b) Time history of the flow intensity ψext. (c) Time history of the average heat and solute
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are illustrated in figure 12, in terms of the time history of Num and Shm (figure 12a)
and streamlines, isotherms and isosolutes, at different time steps (figure 12b–d). The
numerical results, obtained with a grid size of 12 × 50 and ∆t = 5 × 10−4, indicate
a periodic asymmetric oscillating flow consisting of five to six rolls travelling in the
horizontal direction from left to right.

The travelling wave mechanism could be explained in the following manner. First
it is known that, in horizontal enclosures subject to vertical gradients of heat and
solute, either left or right travelling waves are possible. Hence, the final converged
state depends considerably on initial convective flow conditions. Secondly, since the
enclosure is bounded by four rigid and impermeable walls, the travelling waves occur
with zero net flow in the horizontal. The present results are obtained by using a
five-cell perturbation as initial conditions. As discussed above, the cells are observed
to travel from left to right. The birth of the cells takes place near the left side of the
cavity and disappear at the right lateral wall. Near the left vertical wall, where the
viscous effects are dominant, the fluid is almost at rest. According to the linear stability
analysis, this region is unstable and since the heat is the faster diffusing component,
convective flow is generated before the mass flux is established. A convective cell
starts to build up and then occupies the region. As time increases, the cell intensity
becomes stronger and due to the presence of the lateral boundary, its centre of
rotation is shifted to the right, pushing the other cells forward. To accommodate the
newly arrived cell, the one at the other end of the cavity is squeezed and forced to
collapse against the right lateral wall. A similar process is repeated each time a new
cell appears. This mechanism leads to the forward displacement of the other cells.
By examining the isotherms and isoconcentrations (figure 12b–d), one can observe
that the downward and upward thermal and solutal plumes drift to the right and
are tilted to the left from the vertical as if they had been pulled from their bases.
The vorticity strength produced by the buoyancy forces is important in the plumes.
Since these plumes are tilted, each convective roll experiences a negative and positive
vorticity from one vertical side. This, since the flow circulation sense is controlled by
the vorticity production, cause the convective rolls to move in the horizontal direction.

Since the aspect ratio is not large enough the cell velocity is not uniform and
the oscillation amplitudes of the Nusselt and Sherwood numbers remain significant
(see figure 12a). As will be discussed later, by increasing considerably the enclosure
aspect ratio, the cell velocity becomes uniform and the oscillation amplitudes dwindle
leading to time-independent heat and mass overall transfer rates.

Now the case of an infinite layer is investigated for the same set of governing param-
eters and the results are presented in figure 10(b). Periodic boundary conditions and
an aspect ratio of A = AC = 2 are considered to simulate the flow when the horizontal
boundaries are maintained at constant temperature and concentration. When these
boundaries are subject to constant fluxes of heat and solute, an enclosure of aspect
ratio A = 10 with rigid boundaries is considered for the numerical results. For a = 0,
the numerical results indicate that, in the overstable regime RaoverTC 6 RaT 6 Ra

osc
TC ,

both standing and travelling wave solutions are possible. For instance, for Ra0
T = 1.4,

a standing wave solution is obtained (see figure 13a) upon using finite-amplitude
convection as initial conditions. However, using the rest state as initial conditions,

Figure 12. Oscillatory flows for a shallow enclosure, Ra0
T = 1.4, Ra0

S = −2, Pr = 7, Le = 10, A = 5
and a = 0: (a) time history of the Nusselt number, Num, and Sherwood number, Shm; (b-d) time
evolution of the flow patterns, temperature and concentration fields.
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(a)
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Figure 13. Standing and travelling waves in an infinite horizontal layer for Ra0
T = 1.4, Ra0

S = −2,
Pr = 7, Le = 10, A = AC = 2 and a = 0: (a) standing wave: ψmax = −ψmin = 1.898, Num = 1.280
and Shm = 3.197; (b) left travelling wave at constant velocity uC = 0.634, ψmax = −ψmin = 1.910,
Num = 1.282 and Shm = 3.018.

the oscillatory behaviour of the flow is transformed into a left travelling wave with
constant velocity uc = 0.634 (see figure 13b). For the standing wave, the thermal and
solutal plumes are vertical as can be observed from figure 13(a). Naturally, for the
travelling wave solution, the plumes are tilted to the right from the vertical. Similar
phenomena have been observed by Deane et al. (1987) while considering stress-free
horizontal boundaries. As discussed by these authors, standing, travelling, modulated
and chaotic waves are possible. By increasing Ra0

T , the oscillation frequency or the
horizontal velocity are found to decrease towards zero and then the solution bifurcates
towards the stable branch.

The stability of the analytical solutions is briefly discussed here. As discussed in the
beginning of this section, below the threshold for stationary convection two convective
branch solutions are possible. The one with low flow intensity is believed to be un-
stable. Within the range of the governing parameters considered in this study, accord-
ing to the numerical solution of the full governing equations, it is found that the lower
solution is unstable and could not be sustained. The analytical solution is considered
to initiate the code. To confirm these findings, a linear stability analysis (see § 4.2.3)
of the analytical solution is carried out for RaT = −2× Rasup, RaS = −3× Rasup,
Le = 10 and Pr = 7 (Rasup = 720). For Neumann boundary conditions, it was found
that, for the stable branch, all the eigenvalues have negative real parts for any wave-
length. However, for the unstable branch, the solution was found to be unstable to
perturbations having a wavelength greater than 1.94. For this situation, it was found
that at least two eigenvalues have positive real parts (the imaginary parts are zero).
The maximum eigenvalue real part, pr = 2.26, is reached at A = 2.72. These results
indicate clearly that the upper solution is stable and the lower one is unstable which
is in agreement with the nonlinear numerical prediction. Similar results, not presented
here, are obtained for other situations (i.e. Dirichlet boundary conditions). Obviously,
as discussed in § 4.2.3, for high Rayleigh number, the upper steady-state solution
becomes unstable and a transition to oscillatory flow is expected to occur.

The transition from oscillatory to steady flow will be now examined in a container
having a finite aspect ratio with non-slip boundaries for large value of |RaS |. The
results are analysed in the range (RaoverTC < RaT < RaoscTC). A qualitative comparison
of the flow behaviour is made with results obtained by Huppert & Moore (1976)
and Moore et al. (1991) in an infinite horizontal layer with stress-free horizontal
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RaoverTC RaoverTC RaoscTC RaoscTC

Rasup (Approximate) (Accurate) (Approximate) (Accurate)

One-cell mode (λ1) 2323 29 247 32 102 52 478 · · ·
Two-cell mode (λ2) 2716 28 337 31 616 55 515 55 492

Table 9. Critical Rayleigh numbers for RaS = −105, Pr = 1, Le = 101/2, A = 1.5 and a = 0.
The mesh size is 12× 10.

boundaries. In their studies, the solution domain is restricted to a rectangular cavity
with the half-wavelength as an aspect ratio, using stress-free and impermeable vertical
walls. In the overstable regime, it was demonstrated that the oscillatory flow is
characterized by a cyclically reversed flow circulation. Due to the impermeable lateral
boundary conditions considered by these authors, the convective cells were found to be
always constrained in the solution domain. However, using correct periodic boundary
conditions, Deane et al. (1987) and Spina et al. (1998) have demonstrated that, in the
oscillatory regime, the flow motion is characterized by standing, travelling, modulated
and/or chaotic waves. To examine the influence of non-slip boundary conditions on
the flow behaviour, some results have been obtained for A = 1.5, RaS = −105, Pr = 1,
Le = 101/2 and a = 0. For this situation, the critical Rayleigh numbers according
to the linear stability analysis, are given in Table 9. For the value A = 1.5 chosen
here, the linear stability results reveal that at least two convective modes can coexist.
Among these, there are one-cell and two-cell modes which correspond to the first two
eigenvalues (λ1 and λ2, respectively; for similar results see figure 1a).

The numerical solutions of the full governing equations are obtained for a grid
24×20 and time step ∆t = 2×10−4. The grid and the time step chosen here were found
to be sufficient to capture the transient flow details. Obviously, this requires large
computation times. In the absence of nonlinear effects, the linear stability analysis
stipulates that the overstable regime lies between approximately RaT = 29 000 and
55 000. However, the numerical solution shows that at RaT = 40 000 the flow is
steady and symmetric. As indicated in figure 14(a) and 14(b), at least two solutions
are possible, namely the one-cell and two-cells modes.

The one-cell mode will be considered first. By decreasing RaT progressively to
35 500, the flow is observed to decrease in intensity and lose its spatial symmetry
slightly. Depending on the flow circulation (clockwise here), the cell is shifted pro-
gressively to the right and almost a quiescent flow (very weak clockwise circulation)
exists in the left part of the container. This behaviour is illustrated in figure 14(c).
When RaT is decreased to 35 000, as shown in figure 15, the solution becomes un-
steady and it is characterized by asymmetric multicellular flows in which the rolls are
moving non-uniformly from left to right in an oscillatory manner. Similar results were
obtained by Huppert & Moore (1976). For this situation, the time history of the heat
and mass transfer rates (Num and Shm) indicates clearly that the flow is periodically
oscillating and exhibits six extremums per period.

Upon decreasing the value of RaT down to 32 000, the numerical solution indicates
that the travelling cells observed for RaT = 35 000 are transformed into oscillatory
standing rolls for which the flow circulation is reversed cyclically. As depicted in figure
16, the cell number varies from one to three and the time history of Num and Shm
indicates that these parameters exhibit six and four extremums respectively within
each period. Below RaT = 30 000, a decaying flow is observed. For this case, the effect
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(a)

(b)
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Figure 14. Steady flows for RaS = −105, Pr = 1, Le = 101/2 and a = 0. (a) Two-cell
mode: RaT = 40 000, ψmax = 10.126, ψmin = −10.126, Num = 2.546 and Shm = 3.741. (b) One-cell
mode: RaT = 40 000, ψmax = 15.539, ψmin = −0.022, Num = 2.442 and Shm = 3.535. (c) One-cell
mode: RaT = 35 500, ψmax = 8.863, ψmin = −0.339, Num = 1.697 and Shm = 2.316.

of the enclosure aspect ratio, A, on the travelling waves has also been investigated
numerically. As discussed above, for RaT = 35 000 and A = 1.5, the oscillatory flow is
characterized by asymmetric cells moving in the horizontal direction. By decreasing
progressively the aspect ratio step by step (∆A = 0.1) it was found that the travelling
cells can be sustained down to A = 1.3. However, for A = 1.2, the convective flows
become steady, symmetric and unicellular (not presented here).

The two-cell mode is now considered. Upon decreasing the Rayleigh number
progressively from 40 000, and using the previous solution as initial conditions, this
type of flow pattern was found to hold approximately down to RaT = 33 000. Below
that value, the flow becomes oscillatory as illustrated in figure 16. However, upon
using a two-cell steady mode (obtained for RaT = 35 000) as initial conditions for
RaT = 30 000, the numerical solution indicates the occurrence of another kind of
oscillatory flow that can be maintained down to RaT = 29 500 (see figure 17). The
flow structure now consists of two to six counter-rotating rolls and the flow circulation
is reversing cyclically. For this situation, either Num and Shm (figure 17a) exhibit four
extrema. Using this solution as initial conditions for RaT > 30 000, the numerical
results indicate that this oscillatory behaviour is broken and leads to another unsteady
periodic flow as shown in figure 18 for RaT = 32 000 which is very different from
that observed in figure 16. In this range, a small hysteresis loop between the two
solutions was found to exist. Also, it is noticed that, according to the above results
and the linear stability analysis, convective flows are possible below the threshold for
oscillatory convection.

In all the above results, the oscillatory flows are periodic. In the past, Huppert
& Moore (1976) and Moore et al. (1991) have observed that the transition from
oscillatory to steady flow occurs through the appearance of asymmetric and aperiodic
solutions. However, using periodic boundary conditions, Deane et al. (1987) have



On numerical stability analysis of double-diffusive convection 243

(a)

(b)

Shm

Num

7

654

321

8 9

3.0

2.5

2.0

1.0

1.5

Shm

Num

1.0 1.5 2.0 2.5 3.0

t

1

2

3

6

7
5

8 9

4

ã

Figure 15. Oscillatory flows for RaT = 35 000, RaS = −105, Pr = 1, Le = 101/2 and a = 0: (a) time
history of the Nusselt number, Num, and Sherwood number, Shm; (b) time evolution of the flow
structure.

demonstrated that aperiodic (chaotic) convection occurs just near the threshold of the
overstability. Far above this threshold, before achieving the steady-state solution, the
flows are characterized by waves travelling at constant velocity which vanish linearly as
RaT is increased. In the present study, using the oscillatory periodic solution obtained
for RaT = 35 000 and A = 1.5 (figure 16), it is found numerically that aperiodic flows
exist within a narrow range of RaT (approximately for 35 250 < RaT < 35 750, the
results are not presented here).

In general, the present results obtained in rigid containers with an aspect ratio of
A = 1.5 are qualitatively the same as those presented by Huppert & Moore (1976)
in an infinite enclosure with stress-free boundaries. To simulate the periodicity of
the flow structure in the horizontal direction, an aspect ratio equal to half of the
critical wavelength at the onset of convection was chosen by these authors. Due to
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Figure 16. As figure 15 but RaT = 32 000.

an inappropriate periodic boundary condition, i.e. impermeable stress-free vertical
boundaries, the convective cells were not allowed to move in the horizontal direction.
In fact, it was found in the present study and in those by Deane et al. (1987)
and Spina et al. (1998) that when using a correct periodic boundary condition, the
oscillatory flows could be characterized by travelling waves in the horizontal direction.
Therefore, the boundary conditions considered by Huppert & Moore (1976) could be
suitable for steady or oscillatory convective flows (standing waves) when the lateral
roll boundaries are vertical. In general the results presented by Huppert & Moore
(1976) describe very well convective flows in a finite aspect ratio container. Also, it
was noted that in an infinite layer with stress-free boundaries, the critical wavelength
at the onset of monotonic and oscillatory convection is the same. This is not the case
in enclosures having rigid boundaries as discussed in the present paper.

The present study concerns double-diffusive convection in clear fluid media and it
is similar to that conducted by Mamou & Vasseur (1999) in porous media. In general,
the results of both studies are found to be qualitatively the same near the threshold of
oscillatory convection and even far away from criticality. For large Prandtl numbers
(Pr � 1) in fluid media (the inertial forces are negligible which is the case in Darcy
porous media), the same expressions are obtained by Mamou & Vasseur (1999) for
the thresholds of subcritical, oscillatory and monotonic convection (see (4.22)) when
the normalized porosity of the porous media is equal to unity. For lower values of Pr
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Figure 17. As figure 15 but RaT = 30 000.

(inertial force are significant) it is expected that the convective flow behaviour in a
fluid medium could be very different from that in the porous medium. In an infinite
enclosure, with Dirichlet boundary conditions, the critical wavelength at the onset of
overstabilities is different from that of the onset of monotonic convection and it was
found to be a function of the governing parameters. However, in a porous medium, the
critical wavelength is constant (AC = 2). On the other hand, for Neumann boundary
conditions, the critical wavelength is infinite for the porous medium while it could be
finite for the fluid medium, depending on the governing parameter values.

6. Conclusion
The present paper is devoted to numerical and analytical experiments on double-

diffusive convection in confined enclosures subject to vertical gradients of temperature
and solute. Interest in this type of problem is motivated by its importance in many
situations such as in chemical engineering and metallurgy where convection in multi-
component fluids is involved. The vertical walls of the cavity are assumed rigid,
insulated and impermeable, while rigid and stress-free horizontal boundaries are
considered. The vertical gradients of temperature and solute are established by
maintaining the horizontal boundaries at fixed temperatures and solute concentrations
(Dirichlet type) or by imposing constant fluxes of heat and solute on these boundaries
(Neumann type).
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Figure 18. As figure 15 but RaT = 32 000.

The partial differential governing equations are integrated numerically using a
finite element method. Reliable numerical techniques are developed, on the basis
of Galerkin and finite element methods, to study the linear stability of the system
by considering various boundary conditions. Using the Galerkin method, a weak
nonlinear stability analysis is also carried out to investigate the possible existence of
convective flows below the threshold of monotonic instabilities. The main conclusions
of the present investigation are summarized here below.

When the solute is stabilizing, the linear stability analysis indicates that subcrit-
ical flows are possible and the thresholds for stationary, oscillatory and subcritical
convection are determined in terms of the governing parameter. For an infinite layer
with non-slip boundaries, it was found that the critical wavelength is a function of
the governing parameters for both Dirichlet and Neumann boundary conditions and
travelling waves were found to occur near the threshold of oscillatory convection.

On the other hand, as predicted by the nonlinear solution, various phenomena
have been observed, especially below the threshold of monotonic instability, such
as oscillatory periodic or aperiodic flows with complex flow structures. In a square
enclosure, the flow was found to evolve cyclically from clockwise to counterclockwise
circulation and vice versa. For a shallow confined enclosure (relatively large aspect
ratio), the oscillatory flow patterns are non-symmetric and they are characterized by
horizontal travelling waves. In an infinite horizontal layer, using periodic boundary
conditions, standing and travelling waves have been observed.
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Far from criticality, a stability analysis of the parallel flow solution is carried out and
the threshold for Hopf bifurcation (transition from steady to unsteady states) is ob-
tained. Within the range of the governing parameters considered in the present study,
good agreement is obtained between the analytical and the nonlinear numerical results.

The authors are grateful to the reviewers of the manuscript for their constructive
criticisms and useful comments which have improved significantly the general quality
of the present study. We also would like to thank Dr Ali Benmeddour for his helpful
comments and suggestions on this work.

Appendix A. Numerical solution
The weak Galerkin formulation of the governing equations (2.1) is obtained as

follows:

∂

∂t

(∫
Ω

∇ψ · ∇w dΩ −
∫
Γ

∂ψ

∂n
w dΓ

)
+

∫
Ω

J(ψ,∇2ψ)w dΩ + Pr

(∫
Ω

∇2ψ · ∇2w dΩ

−
∫
Γ

∇2

(
∂ψ

∂n

)
w dΓ +

∫
Γ

∇2ψ
∂w

∂n
dΓ

)
= Pr

∫
Ω

(
RaT

∂θ

∂x
+
RaS

Le

∂φ

∂x

)
w dΩ, (A 1)

∂

∂t

∫
Ω

θϑ dΩ +

∫
Ω

∂ψ

∂x
ϑ dΩ −

∫
Ω

J(ψ, θ)ϑ dΩ = −
∫
Ω

∇θ · ∇ϑ dΩ +

∫
Γ

∂θ

∂n
ϑ dΓ , (A 2)

∂

∂t

∫
Ω

φϑ dΩ +

∫
Ω

∂ψ

∂x
ϑ dΩ −

∫
Ω

J(ψ, φ)ϑ dΩ=
1

Le

(
−
∫
Ω

∇φ · ∇ϑ dΩ +

∫
Γ

∂φ

∂n
ϑ dΓ

)
,

(A 3)

respectively, where w and ϑ are the weighted admissible functions, n is the outward
boundary normal vector, Ω is the flow field domain and Γ its boundary.

The elementary matrices for the linear system of (3.1)–(3.3) are

[B]e =

∫
Ωe

∂Hj

∂x
Hi dΩ

e,

[Cθ]
e = [Cφ]e = [C]e =

∫
Ωe

J(ψnk−1,Hj)Hi dΩ
e,

[Kθ]
e = [Kφ]e = [K]e =

∫
Ωe

∇Hj · ∇Hi dΩ
e,

[Mψ]e =

∫
Ωe

∇Hj · ∇Hi dΩ
e,

[Cψ]e =

∫
Ωe

J(ψnk−1,∇2Hj)Hi dΩ
e,

[Kψ]e =

∫
Ωe

∇2Hj · ∇2Hi dΩ
e,

[Lθ]
e = [Lφ]e = [L]e = −

∫
Ωe

∂Hj

∂x
Hi dΩ

e,

[Mθ]
e = [Mφ]e = [M]e =

∫
Ωe

HjHi dΩ
e,



(A 4)
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where Ωe is the integration domain of a given element and Hi are the Hermite
interpolation functions. The above integrals are computed accurately by using the
Gauss formulae.

Appendix B. Stability analysis

For an infinite layer the elementary matrices are obtained as follows:

[B]e = iω

∫
∆ze

HjHi dz,

[L]e = −iω

∫
∆ze

HjHi dz,

[Mψ]e =

∫
∆ze

(
dHj

dz

dHi

dz
+ ω2HjHi

)
dz,

[K]e =

∫
∆ze

(
dHj

dz

dHi

dz
+ ω2HjHi

)
dz,

[Kψ]e =

∫
∆ze

(
d2Hj

dz2

d2Hi

dz2
+ 2ω2 dHj

dz

dHi

dz
+ ω4HjHi

)
dz,

[Mθ]
e = [Mφ]e = [M]e =

∫
∆ze

HjHi dz,

where Hi(z) are the one-dimensional Hermite cubic interpolation functions. The
dimension of the global matrices is reduced to mz × mz with mz = 2(Nez + 1).

Appendix C. Weak nonlinear theory

The constants in (4.11)–(4.13) and (4.26)–(4.28) are given by the following integrals:

B =

∫
Ω

∂G

∂x
F dΩ, K =

∫
Ω

(∇G)2 dΩ, Kψ =

∫
Ω

(∇2F)2 dΩ,

L = −
∫
Ω

∂F

∂x
G dΩ, M =

∫
Ω

G2 dΩ, Mψ =

∫
Ω

(∇F)2 dΩ,

K1 =

∫
Ω

(∇h)2 dΩ, L1 = −
∫
Ω

∂F

∂x

dh

dz
G dΩ, L2 =

∫
Ω

J(F,G)h dΩ,

M1 =

∫
Ω

h2 dΩ.

These integrals were performed with a finite element method using the cubic Hermite
element.
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Appendix D. Stability analysis of the asymptotic solution

The elementary matrices of the linear system resulting from the numerical dis-
cretization of (4.38), are given by

[Bθ]
e=

(
[B]e − iω

∫
∆ze

dθb
dz
HjHi dz

)
+CT

∫
∆ze

dHj

dz
Hi dz, [Bψθ]

e=−iωPrRaT [B]e,

[Bφ]e=

(
[B]e − iω

∫
∆ze

dφb
dz
HjHi dz

)
+CS

∫
∆ze

dHj

dz
Hidz, [Bψφ]e=−iωPr

RaS

Le
[B]e,

[Kθ]
e = [K]e + iω

∫
∆ze

dψb
dz
HjHi dz,

[Kψ]e = Pr[Kψ]e + iω

∫
∆ze

[(
d3ψb

dz3
+ ω2 dψb

dz

)
Hj − dψb

dz

d2Hj

dz2

]
Hi dz,

[Kφ]e =
1

Le
[K]e + iω

∫
∆ze

dψb
dz
HjHi dz, [Mψ]e = −[Mψ]e,

[Mθ]
e = −[Mθ]

e, [Mφ]e = −[Mφ]e,

where [B]e, [Mψ]e, [Mθ]
e, [Mφ]e, [Kψ]e, [Kθ]

e and [Kφ]e are defined in Appendix B.
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